RD-32N, 32FN, 34FN Type Pressure Reducing Valve (for Water or Hot Water)

for Building and Factory Equipments etc.Direct operation, general-purpose valves

(bronze body, medium capacity)

Bronze valves meeting the demand of the time.
Designed based on our technology for making quality pressure reducing valves, which are highly evaluated by our customers, these valves are more reliable, easier to control and use, and particularly, they do not allow rust in the entire piping line, including pipe joints. Using these pipes, you do not need to worry about the occurrence of the red water (rusty water). Ideal for applications in building, house, factory, and boiler and water supply equipments.

Screw Type

Flange Type

■ FEATURES

- Bronze body prevents occurrence of rusty water.
- Low noise design.
- 50% smaller, lighter than traditional cast iron products.

■ SPECIFICATIONS

Model name	RD-32N L/H	RD-32FN L/H	RD-34FN L/H
Code name	RD32N-F \square	RD32FN-F \square	RD34FN-F \square
	※ L (low press.) or H (high press.) for adjustable secondary pressure is required in \square.		
Size	15~50(1⁄2" ~2")	25~50(1"~2")	65~100($21 / 2^{\prime \prime} \sim 4^{\prime \prime}$)
End connection	Screwed JIS Rc	Flanged JIS 16KFF	
Applicable primary pressure	Max. 1.6MPa		
Applicable fluid	Water \& hot water		
Applicable temperature	5~90 ${ }^{\circ} \mathrm{C}$		
Adjustable secondary pressure	L:0.05~0.35MPa, H:0.3~0.7MPa		
Maximum reducing rate	10:1		
Minimum pressure differential across the disc	0.05 MPa		
Leakage allowance	Nil(Confirm at pressure Gauge)		
Valve body pressure test	Hydraulic 2.4 MPa		
Materials	Body(Cast bronze), Trim(Cast bronze), Diaphragm \& disc(Synthetic rubber) Spring case(Size 25~50mm:Cast zinc, Size 65~100mm:Cast iron)		

* Valves with pressure gauge are also available upon your request.
- DIMENSIONS(RD-32N Type)
- No water leakage even if the diaphragm is broken.
- Flexible installation (except that the strainer cap face upwardly).
- Strainer embedded (40 meshes for nominal diameter less than size 50 mm).

Size	D	L	G	H	A	Mass(kg)
15(112")	$1 / 2^{\prime \prime}$	125	41	140	100	2.2
20(3/4")	$3 / 4 \prime$	130	41	140	100	2.3
25(1")	$1{ }^{\prime \prime}$	145	41	141	100	2.6
32(11/4")	$11 / 4^{\prime \prime}$	175	50	187	116	4.9
40(11/2")	$11 / 2^{\prime \prime}$	180	50	187	116	5.1
50(2")	2"	205	50	206	142	7.5

dIMENSIONS(RD-32FN,34FN Type)

Size	L	G	H	A	Mass(kg)
25(1")	170	41	141	100	5.3
32(11/4")	190	50	187	116	8.3
40(11/2")	190	50	187	116	8.6
50(2")	230	50	206	142	12
65(2112")	215	70	280	162	22
80(3")	260	70	285	162	28.5
100(4")	300	78	345	201	39

RD-32FN Type

RD-34FN Type

DATARD-31N ~38F Type Pressure Reducing Valve (for Wiate Hot Water,

Primary pressure
—— set pressure plus 0.3 MPa or lager
——-_ set pressure plus 0.2 MPa
--- - set pressure plus 0.1 MPa
--------- set pressure plus 0.05 MPa

- This flow characteristic is based on air (standard state).
- For gas with specific gravity G, convert the flow into the flow of air.
Converted flow $=$ flow of gas \sqrt{G}
= flow of gas $\sqrt{\frac{\mathrm{M}}{28.96}}$
G: specific gravity (air=1) M: molecular weight of gas .
(M: See page 264 for molecular weight of gas)

Primary pressure
_ـ set pressure plus 0.3 MPa or lager
- set pressure plus 0.2 MPa
--- set pressure plus 0.1 MPa
--------- set pressure plus 0.05 MPa

DATAIRD-31N ~ 38F Type Pressure Reducing Valve (for Water, Hot Water,

FLOW CHARACTERISTIC (for Liquids)

- Size $15 \sim 50 \mathrm{~mm}$

Primary pressure $\left(\mathrm{P}_{1}\right) \mathrm{MPa}$
--------- $P_{1}=1.0 \sim 1.6 \mathrm{MPa}$ (0.5MPa if the set pressure is 0.05 MPa)
$\longrightarrow \mathrm{P}_{1}=\mathrm{P}_{2}+0.2 \mathrm{MPa}$

- - - $\mathrm{P}_{1}=\mathrm{P}_{2}+0.1 \mathrm{MPa}$
- - - $\quad P_{1}=P_{2}+0.05 \mathrm{MPa}$
P_{2} : secondary set pressure (MPa)

Secondary pressure MPa

